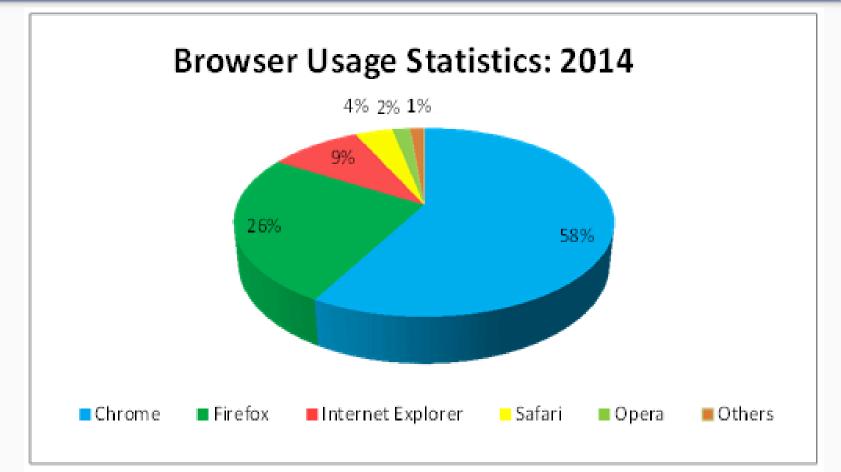
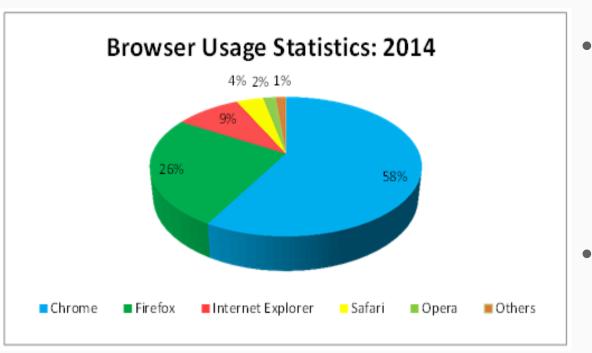

Santa Monica Data Academy

DA101 Data Basics


Welcome!

• Your role (i.e. what you actually do)


• Why are you taking this class?

- 4 examples
- In your group, decide if the answer is **Yes** or **No**
- Come up with one or two reasons **why** you chose your answer

NO: This is a data visualization (*pie chart*)

- What is the total that each percentage is derived from?
 - How many "Others" are there, and what are they?

Monthly	Cash Flow		
	Actual	Budget	Variance
Cash received		6	
Fees	\$21,571	\$20,000	\$1,571
Salary grants	10,005	11,000	(995)
Other	76		76
	31,652	31,000	652
Cash paid out			
Salaries and benefits	21,575	20,000	(1,575)
Food	2,350	2,000	(350)
Play supplies	335	500	165
Other	3,270	1,500	(1,770)
	27,530	24,000	(3,530)
Excess of cash received over cash			
paid out	\$4,122	\$7,000	\$(2,878)

NO: This is a **report**

Monthly	Cash Flow		
	Actual	Budget	Variance
Cash received			
Fees	\$21,571	\$20,000	\$1,571
Salary grants	10,005	11,000	(995)
Other	76		76
	31,652	31,000	652
Cash paid out			
Salaries and benefits	21,575	20,000	(1,575)
Food	2,350	2,000	(350)
Play supplies	335	500	165
Other	3,270	1,500	(1,770)
	27,530	24,000	(3,530)
Excess of cash received over cash		_	
paid out	\$4,122	\$7,000	\$(2,878)

How does this month compare to last month?

Which category is the most overbudget?

•

- Media report of an increase in homelessness

- Media report of a decrease in homelessness

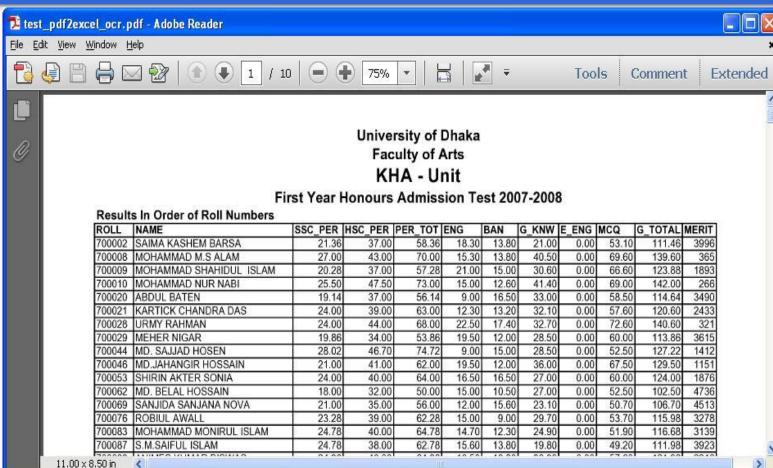
- CoC/government report of an increase in homelessness

- CoC/government report of a decrease in homelessness

NO: This is a map/visualization

Y - Media report of an increase in homelessness

 ${f Y}\,$ - Media report of a decrease in homelessness


CoC/government report of an increase in homelessness

- CoC/government report of a decrease in homelessness

Which regions/states are seeing the most change?

What does a "report" mean? Are there numbers to back it up?

NO: This is a **PDF**

🔁 test	_pdf2excel_ocr.p	df - Adobe Reader											
<u>File E</u> di	t <u>V</u> iew <u>W</u> indow <u>H</u>	elp											×
	9 🖹 🖨 🛛	2 🖓 💿 💽 🚺 / 1		75%	*		F		Тос	ols (Commen	t E	xtended
													^
				Unive	rsity of	Dhaka							
0					ulty of								
					A - U								
		Ei	rst Year H				net 200	17-200	8				
	Result	s In Order of Roll Numbers	ist rear r	ionours	Aumaa		531 200	57-2000					
		NAME	SSC PER	HSC PER	PER TOT	ENG	BAN	G KNW	E ENG	MCQ	G TOTAL	MERIT	
	700002	SAIMA KASHEM BARSA	21.36	37.00	58.36	18.30				53.10		3996	
	700008	MOHAMMAD M.S ALAM	27.00	43.00	70.00	15.30				69.60	139.60	365	
	700009	MOHAMMAD SHAHIDUL ISLAM	20.28	37.00	57.28	21.00	15.00	30.60	0.00	66.60	123.88	1893	
	700010	MOHAMMAD NUR NABI	25.50	47.50	73.00	15.00	12.60	41.40	0.00	69.00	142.00	266	
	700020	ABDUL BATEN	19.14	37.00	56.14	9.00	16.50	33.00	0.00	58.50	114.64	3490	
	700021	KARTICK CHANDRA DAS	24.00	39.00	63.00	12.30	13.20	32.10	0.00	57.60	120.60	2433	
	700028	URMY RAHMAN	24.00	44.00	68.00	22.50	17.40	32.70	0.00	72.60	140.60	321	
	700029	MEHER NIGAR	19.86	34.00	53.86	19.50	12.00	28.50	0.00	60.00	113.86	3615	
	700044	MD. SAJJAD HOSEN	28.02	46.70	74.72	9.00	15.00	28.50	0.00	52.50	127.22	1412	
	700046	MD.JAHANGIR HOSSAIN	21.00	41.00	62.00	19.50	12.00	36.00	0.00	67.50	129.50	1151	
	700053	SHIRIN AKTER SONIA	24.00	40.00	64.00	16.50	16.50	27.00	0.00	60.00	124.00	1876	
	700062	MD. BELAL HOSSAIN	18.00	32.00	50.00	15.00	10.50	27.00	0.00	52.50	102.50	4736	
	700069	SANJIDA SANJANA NOVA	21.00	35.00	56.00	12.00	15.60	23.10	0.00	50.70	106.70	4513	
	700076	ROBIUL AWALL	23.28	39.00	62.28	15.00	9.00	29.70	0.00	53.70	115.98	3278	
	700083	MOHAMMAD MONIRUL ISLAM	24.78	40.00	64.78	14.70	12.30	24.90	0.00	51.90	116.68	3139	
	700087	S.M.SAIFUL ISLAM	24.78	38.00	62.78	15.60	13.80	19.80	0.00	49.20	111.98	3923	172
			64.00	00.00	01.00	10.00				40.20			V

What is the average MERIT score?

Who had the highest overall performance?

Learning Objectives

Understand what *data* is*

Learn basic data vocabulary

Perform basic operations on data

Wikipedia: Data (computing), October 2018 https://en.wikipedia.org/wiki/Data_(computing)

Data is any sequence of one or more symbols given meaning by specific act(s) of interpretation.

Data [...] requires interpretation to become information.

Wikipedia: Data (computing), October 2018 https://en.wikipedia.org/wiki/Data_(computing)

Data is any sequence of one or more symbols given meaning by specific act(s) of interpretation.

Data [...] requires interpretation to become information.

Wikipedia: Data, October 2018 https://en.wikipedia.org/wiki/Data

Data is a set of values of qualitative or quantitative variables.

Data is measured, collected and reported, and analyzed, whereupon it can be visualized using graphs, images or other analysis tools.

Wikipedia: Data, October 2018 https://en.wikipedia.org/wiki/Data

Data is a set of values of qualitative or quantitative variables.

Data is measured, collected and reported, and analyzed, whereupon it can be visualized using graphs, images or other analysis tools.

Wikipedia: Data, October 2018 https://en.wikipedia.org/wiki/Data

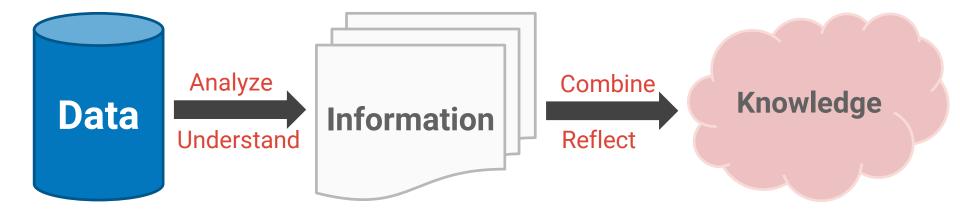
Data is a set of values of qualitative or quantitative variables.

Data is **measured**, **collected** and **reported**, and **analyzed**, whereupon it can be **visualized** using graphs, images or other analysis tools.

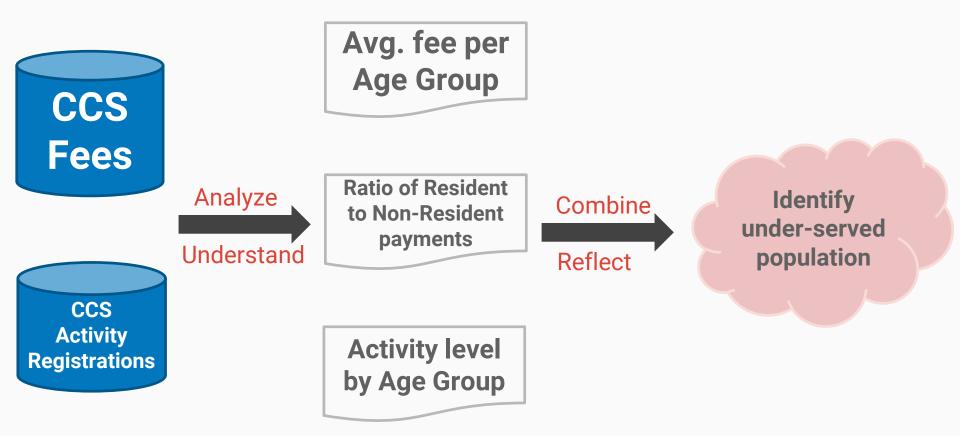
Digital

• Raw

Structured


• Digital (so we can use software tools)

As Raw As Possible


As Structured As Possible

Let's zoom out a little...

The Bigger Picture

The Bigger Picture

This process is called

data driven decision making

Organizing data with tables

Also known as tabular data

Employee ID	Name	Date of Birth	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

The header

Employee ID	Name	Date of Birth	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

The header

Describes the data by naming individual **attributes**

Also known as the *fields* or *properties* of the data

Employee ID	Name	Date of Birth	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

The rows

Employee ID	Name	Date of Birth	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

The rows

Individual items or observations in the data

Also known as the **records** of data

A record contains **values** for all of the attributes

Employee ID	Name	Date of Birth	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

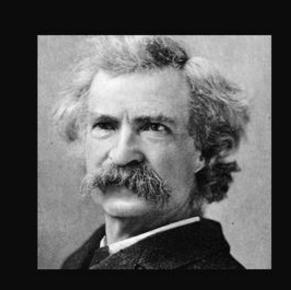
The columns

Employee ID	Name	Date of Birth	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

Contain values of the same **type** for all records

Ideally a column represents a *single attribute* of the data

Employee ID	Name	Date of Birth	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401


Why does structure matter?

Wikipedia: Data structure, October 2018 https://en.wikipedia.org/wiki/Data_structure

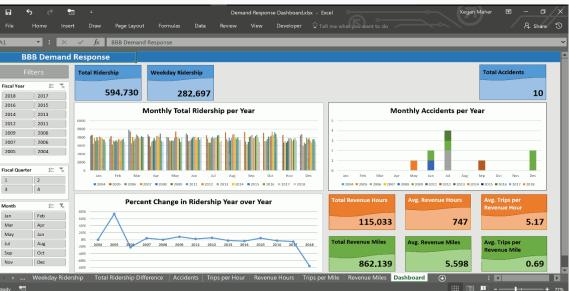
A **data structure** is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data. Wikipedia: Data structure, October 2018 https://en.wikipedia.org/wiki/Data_structure

A data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.

Why does structure matter?

Data is like garbage. You'd better know what you are going to do with it before you collect it.

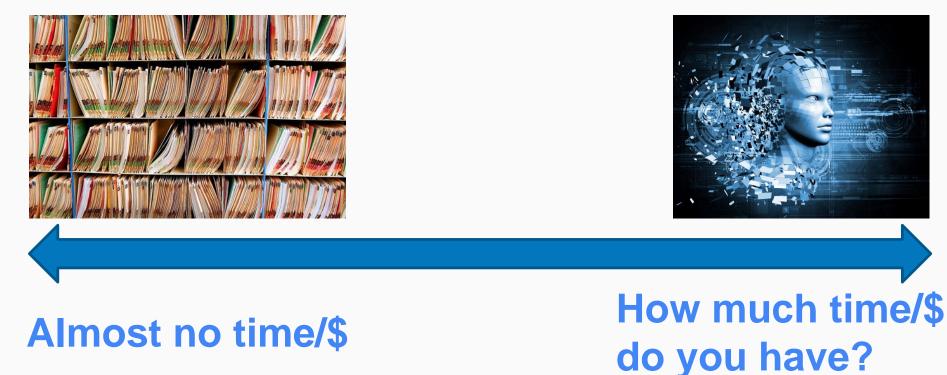
~ Mark Twain


AZQUOTES

Data Collection and Storage

Data Sources and Collection

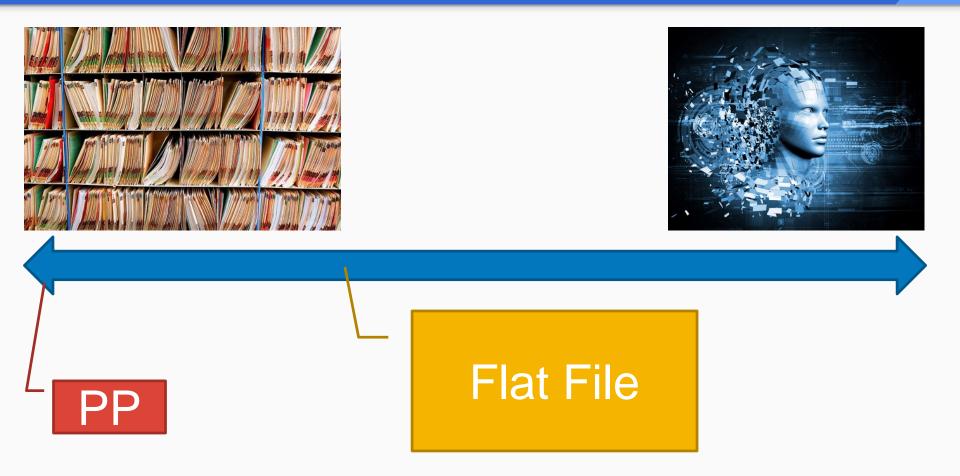
For the year ended June 30, 2017

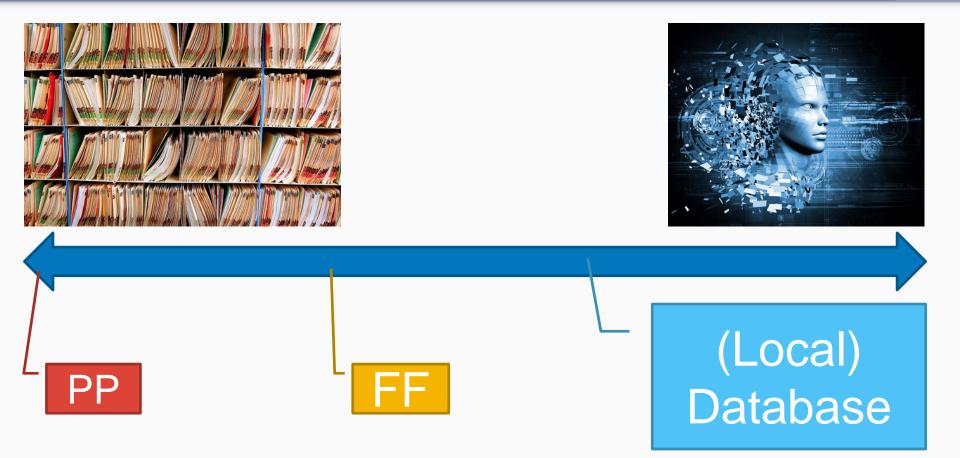


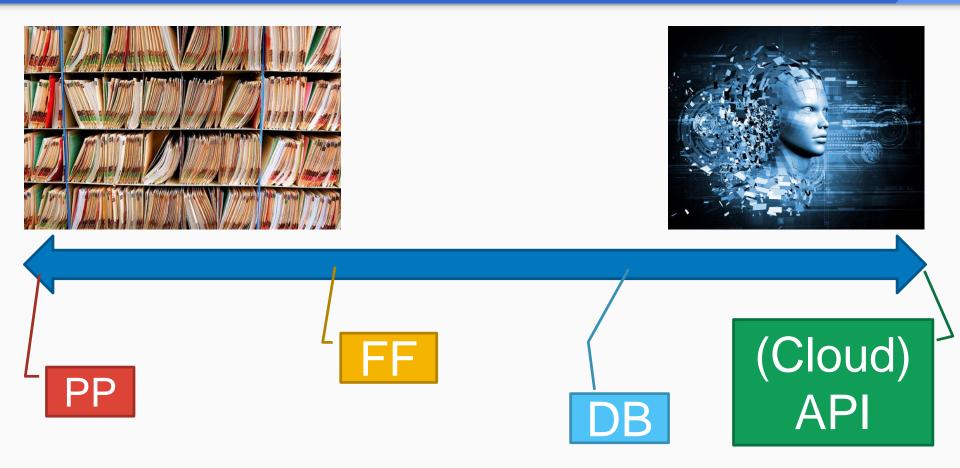
SD²

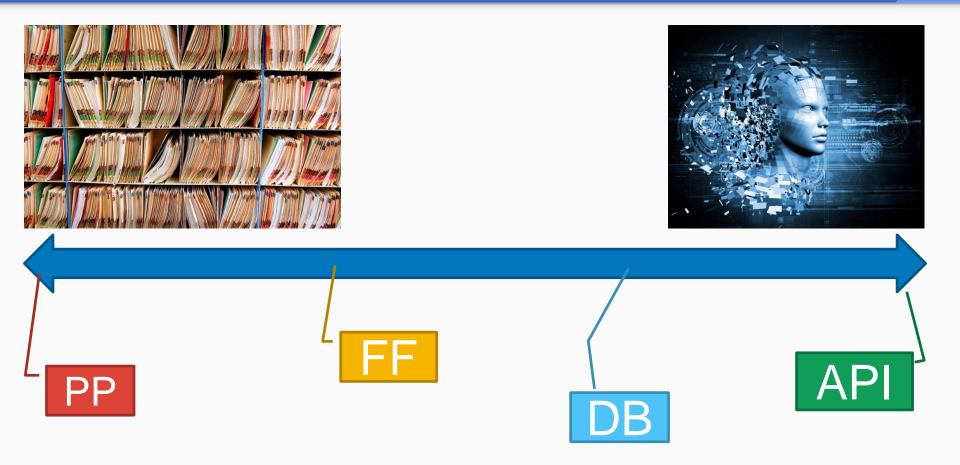
Initial investment/data collection

Flexibility for analysis




Concrete





Pen & Paper

Collecting data: a case study

Homeless Demographic Survey

Collecting data: a case study

Homeless Demographic Survey

• 2016 and 2017

• Questions on age range, gender, race, medical conditions, etc.

2016 Homeless Demographic Survey

- 1. Have you ever been diagnosed with a serious medical condition?
- 2. Have you ever been diagnosed with a substance abuse issue?
- 3. Have you ever been diagnosed with a mental health issue?

Collecting data: a case study

ID	Year	Serious Medical Condition	Substance Abuse Issue	Mental Health Issue
0	2016	Yes	Yes	No
1	2016	No	Yes	Yes
2	2016	No	No	Yes

2017 Homeless Demographic Survey

1. Have you ever been diagnosed with any of the following?

- a) Serious medical condition
- b) Substance abuse issue
- c) Mental health issue

Collecting data: a case study

ID	Year	Diagnosed With
3	2017	Serious medical condition
4	2017	Substance abuse issue, Mental health issue
5	2017	Serious medical condition, Mental health issue

Collecting data: a case study

ID	Year	Serious Medical Condition	Substance Abuse Issue	Mental Health Issue	
0	2016	Yes	Yes	No	
1	2016	No	Yes	Yes	
2	2016	No	No	Yes	
ID	Year	Diagnosed With			
3	2017	Serious medical condition			
4	2017	Substance abuse	issue, Mental health	issue	
5	2017	Serious medical o	condition, Mental he	alth issue	

Santa Monica Data Academy

10 Minute Break

BREAK IS OVER

Design a data table (~15 minutes)

- Study the PDF form
- Come up with a list of columns Decide: *Qualitative* or *Quantitative*?

• Choose a *spokesperson* to share your group's design

TIME TO PRESENT

Organizing data with tables

Employee ID	July 2018 Hours	December 2018 Hours
0	44	0
1	20	28
2	48	48

Organizing data with tables

Employee ID	Date	Hours
0	July 2018	44
0	December 2018	0
1	July 2018	20
1	December 2018	28
2	July 2018	48
2	December 2018	48

Does it matter?

Employee ID	July 2018	8 2018 ID		Date	Hours
10	Hours			July 2018	44
0	44	0	0	December 2018	0
			1	July 2018	20
1	20	28	1	December 2018	28
			2	July 2018	48
2	48	48	2	December 2018	48

Does it matter?

Employee ID Date		Hours	Hourly Rate
0	July 2018	44	\$18.00
0	December 2018	0	\$19.00
1	July 2018	20	\$15.00
1	December 2018	28	\$15.00
2	July 2018	48	\$25.00
2	December 2018	48	\$30.00

This format of tabular data is called

Operations on tabular data

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

Operations on tabular data: Calculated/Derived Field

Employee ID	Name	DOB	Age	Zip Code
20100	Harry	1980-11-12	38	90401
10401	Tom	1966-03-22	53	90405
52200	Rick	1986-09-28	32	90401

Operations on tabular data: Column Aggregation (Sum)

Employee ID	Name	DOB	Age	Zip Code
20100	Harry	1980-11-12	38	90401
10401	Tom	1966-03-22	53	90405
52200	Rick	1986-09-28	32	90401

Operations on tabular data: Column Aggregation (Sum)

38 + 53 + 32 = 123						
Employee ID	Name	DOB	Age	Zip Code		
20100	Harry	1980-11-12	38	90401		
10401	Tom	1966-03-22	53	90405		
52200	Rick	1986-09-28	32	90401		

Operations on tabular data: Column Aggregation (Avg)

(38 + 53 + 32 = 123) / 3 = 41						
Employee ID	Name	DOB	Age	Zip Code		
20100	Harry	1980-11-12	38	90401		
10401	Tom	1966-03-22	53	90405		
52200	Rick	1986-09-28	32	90401		

Operations Recap

- Calculate a new column (DOB -> Age)
- Aggregate values in a column (average all the Ages)

What is the geographic distribution of people in our data?

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

Operations on tabular data: Group by Zip Code

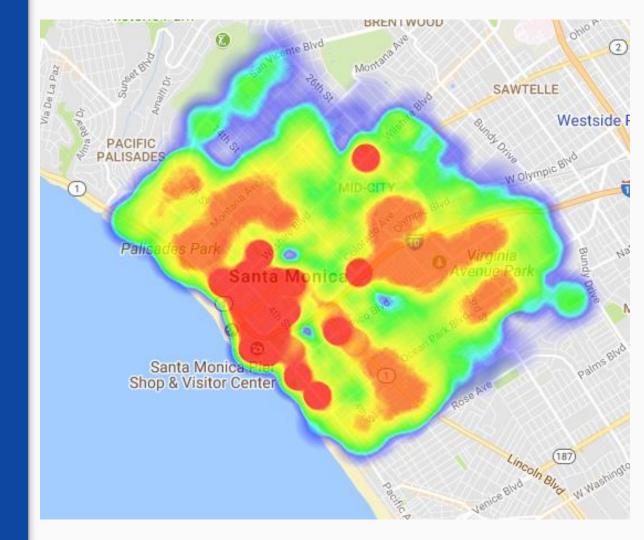
What is the geographic distribution of people in our data?

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

Operations on tabular data: Count within Groups

What is the geographic distribution of people in our data?

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401


Operations on tabular data: Count within Groups

What is the geographic distribution of people in our data?

Zip Code	Count
90401	2
90405	1

Operations on tabular data

Visualize using a heatmap

Operations Recap

- Group (by Zip Code)
- Count (how many rows in each group)
- Visualize (a heatmap shows the distribution graphically)

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
10401	Tom	1966-03-22	90405
52200	Rick	1986-09-28	90401

Operations on tabular data: Filter

Zip Code = 90401				
Employee ID	Name	DOB	Zip Code	
20100	Harry	1980-11-12	90401	
10401	Tom	1966-03-22	90405	
52200	Rick	1986-09-28	90401	

Operations on tabular data: Filter

Who is the youngest person that lives in 90401?

Zip Code = **90401**

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
52200	Rick	1986-09-28	90401

Operations on tabular data: Column Aggregation (Max)

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
52200	Rick	1986-09-28	90401

Operations on tabular data: Column Aggregation (Max)

Employee ID	Name	DOB	Zip Code
20100	Harry	1980-11-12	90401
52200	Rick	1986-09-28	90401

Operations on tabular data: Filter

DOB = 1986-09-28				
Employee IDNameDOBZip Code				
20100	Harry	1980-11-12	90401	
52200	Rick	1986-09-28	90401	

Operations on tabular data: Filter

DOB = 1986-09-28				
Employee IDNameDOBZip Code				
52200	Rick	1986-09-28	90401	

Operations on tabular data: Select a column

Employee ID	Name	DOB	Zip Code
52200	Rick	1986-09-28	90401

Operations Recap

- Filter (keep only rows with Zip Code = 90401)
- Aggregate values in a column (get the maximum DOB)
- Filter (keep only rows with a matching DOB)
- Select (the name field from the remaining row)

We talked about quite a few data operations

Data Operations

- Calculate new columns
- Aggregate columns
- Select columns

- Count rows
- Group rows
- Filter rows
- Visualize

What day had the most **Requests Closed**?

07-Aug (14 Full Release closed)

What is the proportion of **Activities** marked for Full Release vs. No Records Exist?

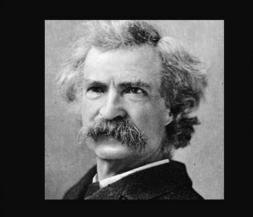
524 (Full Release) 74 (No Records Exist)

What is the **Avg. Days to Close** per month?

Mar 3.9 Apr 6.9 May 6.6

Jun 6.1 Jul 7.8 Aug 7.3

Wrapping up


What do we really mean when we say data

• Digital (so we can use software tools)

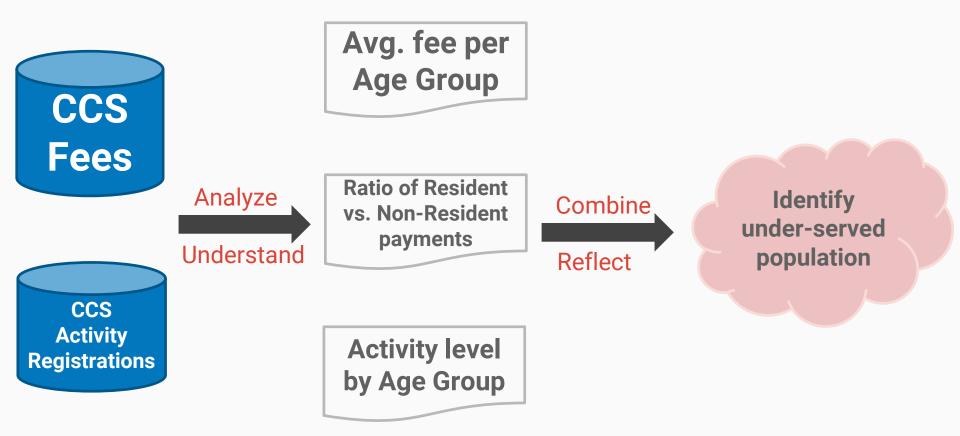
As Raw As Possible

As Structured As Possible

Data source and structure matter!

Data is like garbage. You'd better know what you are going to do with it before you collect it.

~ Mark Twain


AZQUOTES

Operations on tabular data

- Calculate new columns
- Aggregate values in a column
- Select columns

- Count rows
- Filter rows
- Group rows

The Bigger Picture: Data Driven Decision Making

Thank You For Joining Us!

Please fill out the feedback form before leaving ©

Materials for today's course: santamonica.gov/DA101

Questions, feedback anytime: data@smgov.net